LCM rule - définition. Qu'est-ce que LCM rule
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est LCM rule - définition

НАИМЕНЬШЕЕ НАТУРАЛЬНОЕ ЧИСЛО, КОТОРОЕ ДЕЛИТСЯ НА ЦЕЛЫЕ ЧИСЛА БЕЗ ОСТАТКА
Lcm

НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ         
наименьшее из целых положительных чисел, делящихся без остатка на каждое из данных целых чисел. Напр., наименьшее общее кратное 2, 3 и 4 есть 12.
Наименьшее общее кратное         

двух или нескольких натуральных чисел - наименьшее, делящееся на каждое из них, положительное число. Например, Н. о. к. чисел 2 и 3 есть 6, чисел 6, 8, 9, 15 и 20 есть 360. Н. о. к. пользуются при сложении и вычитании дробей: наименьшим общим знаменателем двух или нескольких дробей является Н. о. к. их знаменателей. Если известны разложения заданных чисел на простые множители, то для получения Н. о. к. этих чисел нужно составить произведение всех множителей, взяв каждый наибольшее число раз, какое он встречается. Так, 6 = 2․3, 8 = 2․2․2, 9 = 3․3, 15 = 3․5 и 20 = 2․2․5; поэтому Н. о. к. 6, 8, 9, 15 и 20 есть 2․2․2․3․3․5 = 360. Понятие Н. о. к. применимо не только к числам. Так, например, Н. о. к. двух или нескольких многочленов есть многочлен наинизшей степени, делящийся на каждый из данных. См. также Наибольший общий делитель.

Наименьшее общее кратное         
Наиме́ньшее о́бщее кра́тное (\mathrm{HOK}) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка, то есть кратно им обоим. Обозначается одним из следующих способов:

Wikipédia

Наименьшее общее кратное

Наиме́ньшее о́бщее кра́тное ( H O K {\displaystyle \mathrm {HOK} } ) двух целых чисел m {\displaystyle m} и n {\displaystyle n} есть наименьшее натуральное число, которое делится на m {\displaystyle m} и n {\displaystyle n} без остатка, то есть кратно им обоим. Обозначается одним из следующих способов:

  • H O K ( m , n ) {\displaystyle \mathrm {HOK} (m,n)} ;
  • [ m , n ] {\displaystyle [m,n]} ;
  • L C M ( m , n ) {\displaystyle \mathrm {LCM} (m,n)} или l c m ( m , n ) {\displaystyle \mathrm {lcm} (m,n)}     (от англ. least common multiple).

Пример: H O K ( 16 , 20 ) = 80 {\displaystyle \mathrm {HOK} (16,20)=80} .

Наименьшее общее кратное для нескольких чисел — это наименьшее натуральное число, которое делится на каждое из этих чисел.

Одно из наиболее частых применений H O K {\displaystyle \mathrm {HOK} } — приведение дробей к общему знаменателю.

Qu'est-ce que НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ - définition